
A CONTRIBUTION TO THE PROBLEM
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Based on an analysis of the closing of a channel formed by a particle in its motion in a solid medium, the
necessary and sufficient conditions of the process of superdeep penetration are formulated.

Creation of the superdeep-penetration model has received much attention [1–9]. S. P. and V. P. Kiselev [9],
who used the results of previous investigations [1–5], almost attained the objective. They agreed with the conclusion
of [1–5] that superdeep penetration is a specific effect the necessary condition of whose realization can be formulated
as the obligatory total softening ("or melting," as is added in [1–3]) of the obstacle material near a penetrating particle.
For this purpose the energy of interaction of the particle with the obstacle must be localized in the slip plane of the
obstacle material nearest to the penetrating particle. If ∆ and a are the distance between the neighboring slip planes
and the thermal diffusivity, respectively, and U and d are the velocity and diameter of the particle, this means that
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In [1–5, 9], the presence of a special nonseparating regime of flow of a softened obstacle material about a
particle is considered to be a sufficient condition for the occurrence of superdeep penetration; this regime makes it
possible to realize an unusual kind of analog of the D’Alembert effect for an ideal liquid in a metal [1, 2]. S. P. and
V. P. Kiselev [9], analyzing flow of the obstacle material about a particle in this stage, assume the following: "Let, at
the instant of time t, a spherical particle have velocity U and coordinate x. Over the period ∆t = d ⁄ U, the particle will
shift to the point x′ = x + d; then a spherical cavity (pore) of radius R = d/2, which will be filled with the obstacle
material under the action of pressure p, appears at the point x. If the pore manages to be filled over the period ∆t, we
have nonseparating flow about the particle ..." and hence superdeep penetration. However, drawing such a conclusion,
S. P. and V. P. Kiselev [9] make a mistake. It lies in the fact that a spherical pore can never be formed even behind
an ideally spherical particle in its motion in the material. An extended channel formation similar to a thin cylinder
(Fig. 1) will always be formed behind it (just as behind any particle with axial symmetry moving in parallel to its
axis). To determine the time of filling of the cylindrical channel formed we employ the system of equations of motion
for the one-dimensional case with axial symmetry in cylindrical coordinates [10]
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where the last equality is the equation of state of the medium. Assuming that, in the first approximation, u depends
on time insignificantly (∂u ⁄ ∂t = 0) and disregarding compressibility, which can be estimated as very low at pressures

of the order of 10 GPa [1–6], we obtain ∂u ⁄ ∂r = −u ⁄ r and, having substituted this into the first equation of (2), we
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. Replacing the pressure gradient by its average value 2p/d in this equation, we obtain

u = − √ 2pr
dρ

 . (3)
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Having performed the replacement u = dr/dt in (3), we have the differential equation

dr
dt

 = − √ r  √ 2p
ρd

 , (4)

which can be integrated with the initial r(t=0) = d and final r(t = τ) = 0 conditions. For the total time of filling of the
channel we have

τ = d √ 2ρ
p

 . (5)

The channel or the pore must be filled in a time shorter than d/U so as to ensure nonseparating flow about the parti-
cle, i.e.,

τ < 
d
U

   or   U < √ p
2ρ

 . (6)

Thus, the necessary (1) and sufficient (6) conditions create an unusual kind of velocity corridor for superdeep penetra-
tion:

Umin = 
ad
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From (7) it is clear that the threshold pressure of superdeep penetration exists, since the condition Umax ≥ Umin must
rigorously be obeyed:
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For ∆ = 1.5⋅10−6 m, d D 10−5 m, ρ C 7830 kg ⁄ m3, and a  = 2⋅10−5 m2 ⁄ sec [9] we obtain pcr C 0.4 MPa and Umin C 440
m/sec. The resistance force acting on the particle from the obstacle is as follows:
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The first term on the right-hand side of (9) is a strength one and it is vanishingly small in the case of softening of
the material (the necessary condition of superdeep penetration (1) is fulfilled); the second and third terms owe their

Fig. 1. Formation of a channel behind a penetrating particle.
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occurrence to the formation of a cavity behind the particle. In the case of its total filling (the sufficient condition (6)
is fulfilled) they vanish, just as the entire F. The D’Alembert effect (motion without resistance) is realized, which is
usually responsible for the superdeep-penetration effect. In what follows, conditions (7), expressing both the necessary
and sufficient conditions of superdeep penetration, will be named the corridor of superdeep penetration. Particles be-
longing to this corridor in parameters can move further actually without meeting resistance from the obstacle, i.e., uni-
formly, although a certain loss due to the softening and plastic deformation of the material behind the softening zone
is inevitable. However it will not be taken into account in this step of investigations. We note that in determining the
velocity of the particles in superdeep penetration, one must take into account their obligatory deceleration in the initial
stage of the process of penetration until they reach the depth h D d, after which the superdeep-penetration mechanism
comes into play. We determine the value of the velocity at this depth, having integrated the equation of motion of the
particle:
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As a result we obtain

V = √U0
2
 exp (− z) − 

p

ρ
 (1 − exp (− z))  , (11)

Fig. 2. Parameters of the particle flux at the level of the obstacle surface vs.
loading time.

Fig. 3. Corridor of superdeep penetration and particle velocity (with allowance
for starting deceleration in superdeep penetration).
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where z = 
ρpSd

M
. It is precisely this velocity that will be employed in subsequent calculations. Condition (8) makes it

possible to establish the dependence of the limiting size of penetrating particles on the pressure:

d ≤ dcr = 
∆2

a
 √ p

2ρ
 , (12)

which will yield dcr C 57 µm at a pressure of D1 GPa and dcr C 95 µm at p = 3 GPa.
It should also be noted that, contrary to the assumption of [9], superdeep penetration does not reveal any sub-

stantial dependence on the strength properties of particles. Thus, superdeep penetration was observed for TiB2 and
Al2O3 powders [11], copper [12] and bronze [13], and for a number of other materials [14] with highly diverse
strength properties. Unlike [9], the subsequent calculations of superdeep penetration are based on the gas-power-jet
model [13, 15, 16] formulated directly for the acceleration scheme on whose basis the experiment was carried out [13,
16]. Figure 2 shows the dependences of the velocity (a), density (b), and pressure (c) of the particle flux on the load-
ing time obtained according to the results of the calculations [13, 16]. Figure 3 illustrates the notion of a penetration
corridor. For the part of the flux that approaches the obstacle after t1 C 125.00 µsec superdeep penetration is no longer
possible, but this part of the flux, by its action on the obstacle, prolongs the motion of the highest-velocity particles,
which penetrate with velocity U = Umax from the instant of time t1 up to the instant t2 (D277 µsec) and attain a depth
of D0.157 m (H ⁄ d C 2.5⋅103). Beginning with t2 the pressure in the obstacle becomes lower than the threshold value
(8), which is critical for superdeep penetration.

The author expresses his thanks to V. A. Shilkin and R. I. Shit’ for their assistance in carrying out this work.

NOTATION

U0, velocity of the particle flux at the level of the obstacle surface, m/sec; p, pressure generated in the ob-
stacle by the particle flux, Pa; U, instantaneous velocity of a particle in its deceleration in the flux, m/sec; V, velocity
of a particle upon penetration to the depth H = d, m/sec; H, penetration depth, m; M and d, mass and diameter of
a particle, kg and m; S, midsection of a particle, m2; ρ and ρp, densities of the obstacle and the particle respectively,
kg/m3; τ, total time of filling of the channel formed by a particle, sec; r and u, radial coordinate and component of
the velocity of the obstacle material, m and m/sec; t, running time, µsec; t1 and t2, calculated time intervals, µsec; z,
dimensionless parameter characterizing the penetration depth; a and T, thermal diffusivity and temperature of the ob-
stacle, m2/sec and K; ∆, thickness of the slide planes of the obstacle, m; dcr, limiting diameter of penetrating particles
before attaining which one can have superdeep penetration, m; pcr, minimum threshold pressure of superdeep penetra-
tion, Pa; x, running penetration depth of a particle; σ, static strength of the obstacle, Pa; F, force of resistance from
the obstacle to a penetrating particle, N. Subscripts: min, minimum value of the quantity; max, maximum; p, particle;
cr, critical.
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